An Integrative Platform for Three-dimensional Quantitative Analysis of Spatially Heterogeneous Metastasis Landscapes
نویسندگان
چکیده
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.
منابع مشابه
Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016